Showing posts with label oscilloscope. Show all posts
Showing posts with label oscilloscope. Show all posts

Thursday, May 4, 2017

Tektronix 2465B Capacitor Replacement and Repair

Recently and randomly I was notified from a friend about a local company liquidation auction for a local Unisys facility that was shutting down. Hoping to score some cool old vintage computer hardware I scoured the item listings to no avail. Nothing was really of interest, a lot of office furniture, shelving units, misc bins of random hardware bits. Ten years ago I would have been all over this auction, bidding on random carts of hardware to see what I can find but I just don't have time or the space for that anymore. After looking at a hundred or so pages of auction photos, one thing did catch my interest.

Hiding on an equipment cart was a Tektronix 2465B, sitting all by itself, the only piece of test gear in the entire auction out of hundreds of lots. I'm sure it was dead, the odds of it working and still being there were very unlikely.  Having a 2445B, I have always wanted a 2465B, being the top of the line version at the time only second to the 2467 with its microchannel plate CRT. I ended up winning it for like 50 dollars including the cart which actually ended up being a really nice heavy duty equipment cart. Even if this scope was totally toast, it would still be a win for parts.

Once I actually picked up the scope and had a good look at it, it was in pretty good shape. The only physical damage was the vertical position knob for channel 2 being broken off, but this was visible in the auction picture. The rest of the scope was in really good condition, clean with no other physical damage.

Tektronix 2465B

Having restored my 2445B and knowing this will need a full re-cap, I ordered all the replacement caps for the power supply and A5 PCB boards. The power supply for the entire 24NN series was basically identical with a few minor revisions. One thing I did notice though was some of the capacitor values were different in this 2465B compared to the capacitor list I had for my 2445B. Instead of placing the order based on my old parts list, I created a new list based off the values in this scope. Some parts on my old DigiKey list were no longer available anyway.

Here is the updated DigiKey parts list:

Quantity Part Number Manufacturer Part Number Description
10 P10267-ND EEU-FC1E470 CAP ALUM 47UF 20% 25V RADIAL
2 P13465-ND EEU-EB1H4R7S CAP ALUM 4.7UF 20% 50V RADIAL
1 P5874-ND ECA-2WHG3R3 CAP ALUM 3.3UF 20% 450V RADIAL
4 P10769-ND EEU-FC2A100 CAP ALUM 10UF 20% 100V RADIAL
4 493-10252-1-ND UMP1H010MDD1TP CAP ALUM 1UF 20% 50V RADIAL
1 399-7494-ND PME271Y510MR06 CAP FILM 10000PF 20% 1KVDC RAD
2 399-5410-ND PME271Y422MR30 CAP FILM 2200PF 20% 1KVDC RADIAL
1 EF2563-ND ECQ-E2563KF CAP FILM 0.056UF 10% 250VDC RAD
2 399-7482-ND PME271M568MR30 CAP FILM 0.068UF 20% 275VAC RAD
2 PCE3777CT-ND EEE-FK1A330R CAP ALUM 33UF 20% 10V SMD
2 PCE3833CT-ND EEE-FK1V100R CAP ALUM 10UF 20% 35V SMD
2 493-1421-ND UVZ2E331MRD CAP ALUM 330UF 20% 250V RADIAL
10 P10323-ND EEU-FC1H101 CAP ALUM 100UF 20% 50V RADIAL
1 P5856-ND ECA-2CHG100 CAP ALUM 10UF 20% 160V RADIAL
4 P11236-ND EEU-FC1V271 CAP ALUM 270UF 20% 35V RADIAL
2 P10345-ND EEU-FC1J181S CAP ALUM 180UF 20% 63V RADIAL

Note that I ordered a few extra values of some of the caps to meet price breaks. Total cost came to $30.02 without shipping.

Just like on my 2445B, I always use high quality Panasonic 105 C caps and original replacement RIFA film capacitors. The couple non-polarized caps are 105 C Nichicons along with the two large filter caps. None of the resistors in this power supply were damaged like on my 2445B, so I left them alone on this one.
2465B power supply with new capacitors

For my first power on test, the scope did power up, went through the first self-test cycling the panel LEDs, fan was running, but nothing on the CRT. Intensity controls had no effect. Even the graticule illumination was dead. Timebase, channel, and trigger controls responded to changes so the digital portions were at least working. Checking voltages, some were off and had ripple so I powered down and would wait for the capacitors to arrive.

Once all capacitors were replaced, powering up had the same result as before. Checking voltages they were all in spec now and the ripple I had was gone, but still no display. Time to reference the service manual.

One note on the 2465B service manual, I found three different versions all of which having some slightly different information. None of the info contradicted itself, just some manuals had more information than others. Once of the manuals looked to be for the older version of the 2465B where the A5 pcb was not using surface mount components, this was for early serial numbers . The other two looked to be newer. I ended up referencing all three throughout the repair process.

Following the troubleshooting flowcharts in the service manual, I ended up adjusting the grid bias adjustment which when increasing did give me a working display. Traces appeared along with on-screen graphics, but they were out of focus and had horizontal artifacts across the display. Intensity controls had no effect leading me to believe it was something with the Z axis processing based on the service manual flowcharts. The primary culprit would be the U950 hybrid which handles most of the Z axis functionality.

2565B with grid bias increased


Since I did have a somewhat readable display, at this point I was able to run the self-test routine outlined in the service manual to verify the rest of the functionality. In doing this, the scope passed with no issues, so good news there. I could also check power-on hours and cycles, 15703 and 2440 respectably. About 5k more hours than my 2445B but still not a high amount compared to some 24NN's I have seen that are well over 30K hours.

At this step, having a working donor scope makes troubleshooting significantly easier. All of the hybrid ic's on the main board are identical, with exception to U600 which has a different part number.  165-2393-00 on the 2445B and 155-0237-00 on the 2465B. Reading into this, they are compatible with the exception being that the 2445B version does not have 400MHz bandwidth. So I can use it for testing if necessary, it will just limit bandwidth on the 2465B to something under 400MHz. You would not want to use this long term in the 2465B.

Pulling parts from a working donor scope is always a little scary, I could end up with two non-working scopes in the process but parts are now plentiful on eBay for reasonable money.

2445B donating hybrids to the 2465B

Swapping U950 from my 2445B to the 2465B did fix the display issue. After turning the grid bias back down, the intensity and readout intensity controls now properly function. The display has a nice clear readout and clean trace. Looking on eBay, a working tested replacement U950 is about $50 - $60 which has been ordered.

Checking the rest of the scopes functionality I did notice another problem. As I adjust the horizontal timebase, the trace will disappear after increasing it beyond 2ms. Turn it back down and the trace will reappear. This behavior repeats for all 4 channels and is Y axis independent. Applying a signal has no change on behavior. Either the built in square wave calibrator or an external signal from a signal generator, the scope will lose trigger right around 2ms then have no trace at all beyond 1ms. Changing any setting, 20mhz bw, delayed timebase, other triggering options, etc made no difference. So something is up with the horizontal timebase and / or triggering on this scope.

One first attempt was to swap out the remaining hybrid ic's from my 2445B to the 2465B to at least eliminate another one of them being a possible issue. This ended up making no difference, so the next step will be to go back to the service manual. Their is a lengthy flowchart to debug horizontal trace issues, following this will be my next step. I'll leave this for a part II of the repair.

Thursday, April 7, 2016

HP 54503A NVRAM Replacement - DS1235YW to DS1230Y

A few weeks ago I turned on my HP 54503A to find it behaving strangely. While probing a circuit under test, I could not get any waveforms at all. Was very unusual, so ran a quick self test and was greeted with the following:

HP 54503A Selftest Failure - Protected Non-Volatile RAM

This didn't look good.  An important key to the cause of the failures was the failure of the Non-Volatile ram. Most older equipment like this used a Dallas Semiconductor real time clock / NVRAM IC to store the calibration data along with waveform storage. In this case it is not a real-time clock, just a battery backed DS1235YW RAM ic. This classic chip has an internal battery to backup the contents inside, technology that existed way before inexpensive flash memory that has a limited lifetime. Based on the manufacturing date on the late 1980s, this ic was almost 30 years old, way beyond its expected lifetime but about average for how long I see these devices last.

The HP 5450NA family of scopes 54501A, 54502A, and 54503A are really nice scopes readily available for cheap. My favorite part about them is the interface, it is intuitive and lightning fast. Response from button inputs is instantaneous, unlike many modern scopes which makes it a pleasure to use. This was definitely getting repaired.

A quick way to check to see if the NVRAM is indeed the issue is to flip the write protect switch on the back of the unit off and attempt calibration. Once you calibrate this scope, you flip this switch to protect the contents from accidental writing, but in this case I want to re-calibrate it and to do so you must enable writing. Once this switch was changed I ran the calibration procedure for channel 1. It calibrated successfully and brought the scope back to a working state. So this was the only problem and the NVRAM ic will need to be replaced, unless you feel like going through a full calibration every time you power the scope on. Since a full calibration of all channels takes around 25 minutes, this is not ideal.

HP 54503A Main Board


This scope comes apart very easily, the main board slides out of the back with little effort. Once removed the Dallas NVRAM was easy to spot:

HP 54503A DS1235YW


Removing this ic is pretty easy, use a nice fat hot iron and some fine solder wick and the ic falls right out with no damage to traces.

HP 54503A NVRAM Removed

As far as a replacement, the original DS1235YW is not easily available, but the pin compatible DS1230Y is available. It is still made and Digikey sells it for $30. Then there is the eBay source of them direct from China for only $5. While the Chinese version is guaranteed to be a knock off, it does work as I have used them before. I went ahead and used one for this replacement since I have a few laying around.

There are also available pin compatible flash based alternative ics that you can use in this scope, but I have never personally tried them. One last note is as long as you are going through the trouble of this, go ahead and place a socket on the board so in the event your new NVRAM doesn't work, you won't have to stress the board with another de-solder. Here is the replaced ic:

HP 54503A DS1230Y NVRAM

Once replaced and everything is back together, calibration is the last step. Set the write protect switch to off and run through all the calibration procedures. The calibration for this scope requires a 50ohm bnc cable to be fed from two outputs on the back of the unit to each channel is sequence, the scope really walks you through everything. The manual will explain all of this as well, but is really a simple procedure and a really nice feature.

HP 54503A Calibration
When done, set the switch back to write protect, test it out and power cycle it to verify all calibration was held. Good as new.

Monday, May 11, 2015

Tektronix 2246 Repair Part II


In the process of debugging the strange intermittent display issue on my Tektronix 2246 after re-capping the power supply, things are not looking so good. Things have actually gone from bad to worse. First of all, the short (or open connection) somewhere in this unit which I can return the unit to normal operation by twisting the chassis has been more difficult to find that planned. I pulled and went through the entire power supply again and did not find any issues. Same for all of the connectors, all are seated correctly without issue. Every screw was in place and I checked to make sure there were no poor grounding issues throughout the scope. What happened next is the result of my own stupid mistake (again) which is just making things worse.

In the process of removing the power supply, you have to remove the high voltage anode cable to the crt which is generated in the main power supply. This cable runs out of the supply towards the front of the unit and has an insulated high voltage connector that is clipped on the the metal chassis between the power supply and front panel board. When I was pulling the power supply out for the third time, I wasn't careful and unplugged this connector only a minute or two after powering the scope down. At this point I let the cable go and it fell towards the A16 main processor board letting a nice spark jump from the high voltage cable to the main board most likely due to stored capacitance that had not been bled off yet. I didn't see exactly where it hit, but it didn't matter. The stored voltage had hit the board and I knew damage had been done. Upon reassembly and power up it was confirmed.


The display was in bad shape at this point, everything to the left say 2/5ths of the display was not showing up and squashed into a vertical line. Definitely not good. So now my priorities have changed, now I have to debug this issue to make sure I haven't burnt out something serious like the main display DACs or readout processors as these would most likely be difficult parts to locate and replace.

I started right with the schematic, which was my next stop anyway in locating the intermittent display issue. The full service manual including schematics is easily available for this scope which is another reason why I love the older Tektronix gear. I focused right away at the character generator and display readout circuitry.



After some probing around, I noticed that output from the A16 processor pcb was odd, the horizontal output drive for the display was not looking right, the bottom half of the waveform was clipped which would explain the left half of the display being smashed into a vertical line. Further up the signal path, the signal was looking correct from the DAC and the multiplexer. So the final op amp stage was looking to maybe be the culprit which makes sense as these op amps definitely wouldn't survive a direct high voltage hit.

Output of mux on left, output after op amp on right
So only the final output stage from the A16 pcb was looking bad, this is a good sign as the actual logic does not look to be damaged. Only the final outputs through an op amp look to have been hit. The op amp in question is a TI TL074. There still may be more damage but I'm going to focus on this op amp for now. I didn't have any in my parts bins, so I placed an order for a handful with Digikey which I should have in a few days. Stand by for part III.



Saturday, May 9, 2015

Tektronix 2246 Repair


Last year I had talked about how I accidentally destroyed my Tektronix 2246 oscilloscope by removing the cover. There was a small dent in the metal bottom panel that while removing it had snagged a heatsink on a Motorola 151-0846-00 labeled TO-39 transistor, specifically Q702 on the A10 main board. This ended up ripping the pins out of the transistor can leaving me with a unusable scope. Unfortunately this was not a common part and trying to locate one is next to impossible. I had attempted to use a 2N3866A with no success, the scope was definitely not happy with that transistor in it, an original replacement part would be necessary.

I did ultimately find a donor board. Late last year I found a complete used replacement board on eBay for around $40 which contained both of the 151-0846-00 labeled transistors. This option was definitely cheaper than a whole parts scope and I would hate to ruin another 2246 which may be repairable just for this one transistor. Once I replaced this transistor in my 2246 it was good as new.



I want to focus the attention now to a second Tek 2246 scope that I own with its own set of troubles. I purchased another 2246 a few years ago for cheap, I think it was only around $100. This scope had a lot more use than my original one, while it was in good cosmetic shape it had some issues mostly related to old capacitors. The display was not stable, the character generated osd and cursors would jump around and upon probing the supply rails you could see there was some noise present. A re-cap would be necessary and possibly some additional caps on the A-10 main pcb if necessary.

The 2246 main power supply is pretty basic, much more simple to work on than the Tektronix 2445B power supply which I have also done. One interesting observation upon accessing it is that all of the caps look to be large axial electrolytics:

Trktronix 2446 Power Supply

The bottom of the board told a different story, and once removing a capacitor and testing it was indeed a standard radial cap with an interesting third lead out the top that wasn't connected to anything. Maybe it was designed for additional stability? I know this scope was a popular portable model so my guess it was just some additional ruggedness built into the design. Interesting regardless, at least I can replace them with standard radial caps which are much easier to source.


Replacement caps were all Panasonic 105 degree C. units which are always my first choice, then using Nichicon capacitors in cases where the Panasonic's were not available. The final rebuilt version looked like this:

Tek 2446 Power Supply Rebuild
Quite a difference in size. For good measure I also replaced all of the high voltage film capacitors on the board, many looked stressed as they did in the 2445B. I left the large primary switching capacitor alone, they are rarely every a source of trouble. Everything else looked okay.

This is where things started to get interesting. After putting everything together and powering the scope back up, I had strange display issues. The entire display was shifted left. I started looking around to see if I had missed a cable or possibly had a connector loose during the reassembly but didn't see anything obvious. This scope was working just fine before the power supply rebuild so this issue was definitely something that I caused. At this time I went to turn the scope over on its side while powered up that the display snapped back into alignment. After some more poking around I realized that if I put pressure on the chassis, twisting it just lightly I could get the display back in alignment. So it must be a bad ground, loose connector, bad solder joint, or some other mechanical failure where putting pressure on the chassis would complete whatever broken connection was occurring. It will just be a matter of tracing down where the issue is at. More to come in part II.

Monday, January 13, 2014

Tektronix 2445B Capacitor Replacement

Due to the fact that my Tektronix 2246 is currently out of commission (although parts are on the way as I did find a parts unit 2246 scope) I have focused my attention to my other favorite Tektronix scope, the 2445B. I primarily use my 2246 as it was the first 'real' scope I purchased about 10 years ago and is a rock solid analog scope. A few years back I came across a 2445B for a good price and have used it mostly for portable use as it is slightly smaller than my 2246. My 2445B also has Tektronix calibration stickers intact from 2002 indicating at least that no one has been inside mucking around with it.

My specific 2445B is the 150Mhz version and is in excellent condition although there have always been a few issues. The on screen display would jump around and not have a clear focus regardless of the focus adjustment and other internal astig calibration controls. When changing volts or time functions there would also be erratic display behavior. Knowing that the scope was over 20 years old and has unknown operational hours, I decided to start with a full capacitor replacement of the power supply. Electrolytic capacitors do go bad over time from several factors, so replacing them is a common step in all old electronic equipment.

The first step is to take it apart and inspect it. I will say the 2445B is one of the better scope designs I have worked on from Tektronix. The design is very modular with the power supply being very easy to access. Once removed, the power supply pulled apart into two boards shown here:

Tektronix 2445B Power Supply
There are quite a few caps between the two boards, luckily most are radial caps and not axial. As I began inspecting the caps themselves I was surprised to see that some were rated for only 85 Degrees C instead of the higher 105 Degrees C rating. I also noticed that some were definitely showing some 'bulging' which is usually indicative of high heat and ultimate failure, although none were leaking. Some other things I noticed were that all of the high voltage film capacitors looked stressed. They had slightly bulged as well and had crack marks on their casings. A few resistors also looked bad including two 15 Ohm ones within the surge protection circuitry in the line level input stage. One had actually blow open and had a physical crack in it.

Additionally looking at the A5 Control pcb I noticed that there were four surface mount electrolytic capacitors on it. I learned how leaky these caps can be after a complete Tek TDS-420 restoration which needed a total of about 75 of them replaced. Looking closely at the board I could already see they were leaking and causing corrosion to traces, so they would be replaced as well.

Tek 2445B A5 Control PCB Caps

Ultimately I decided to replace every capacitor on the power supply boards and the four smd caps on the control pcb. I would leave the caps on the A1 main pcb alone for now as they are primarily low voltage and would be considerably more work to replace. If there was still issues post-recap I would then consider replacing them as well.

For electrolytic capacitors I always go with Panasonic 105 Degrees C units. I will use Nichicon 105 C unit if a Panasonic value is not available. The film capacitors were replaced with Kemet units which were actually also the originally spec'd components. I upped the blown 15 ohm resistors to 3W units. For those interested in re-capping their own Tek 2445B (or variants) here is my Digikey parts list:

Quantity Part Number Description
6 P13476-ND CAP ALUM 100UF 25V 20% RADIAL
2 P13125-ND CAP ALUM 47UF 25V 20% RADIAL
4 P13123-ND CAP ALUM 330UF 25V 20% RADIAL
2 P13131-ND CAP ALUM 220UF 50V 20% RADIAL
1 P13465-ND CAP ALUM 4.7UF 50V 20% RADIAL
1 P5874-ND CAP ALUM 3.3UF 450V 20% RADIAL
4 P10769-ND CAP ALUM 10UF 100V 20% RADIAL
4 493-10252-1-ND CAP ALUM 1UF 50V 20% RADIAL
2 P15W-3BK-ND RES 15 OHM 3W 5% AXIAL
1 989-1206-1-ND RES 270K OHM 3W 1% AXIAL
2 P4639-ND CAP FILM 0.068UF 250VAC RADIAL
1 399-7494-ND CAP FILM 10000PF 250VAC RADIAL
2 399-5410-ND CAP FILM 2200PF 250VAC RADIAL
1 EF2563-ND CAP FILM 0.056UF 250VDC RADIAL
2 UKL1E101KPDANA-ND CAP ALUM 100UF 25V 10% RADIAL
2 PCE3777CT-ND CAP ALUM 33UF 10V 20% SMD
2 PCE3833CT-ND CAP ALUM 10UF 35V 20% SMD
2 493-1421-ND CAP ALUM 330UF 250V 20% RADIAL



Most of the Tektronix 24NN family (2445, 2455, 2465, 2467, etc) has the exact same power supply, so the component list above should apply to all. Here are the rebuilt power supplies once all components arrived:

Tek 2445B Capacitor Replacement
Once completed there were about 45 components in total that needed to be replaced. While the large Sprague 290uF caps were probably were fine I replaced them for good measure anyway.


Tek 2445B Capacitors

All completed and reassembled my 2445B has a beautiful display and extremely sharp digital readouts. I don't see any need to replace the A1 pcb caps at this time but will still consider it for the future. With a total component cost of $31 and about two hours of time I would recommend this rebuild for any original 24NN scope.

Rebuilt Tektronix 2445B



Monday, January 6, 2014

How I Accidentally Destroyed my Tektronix 2246

I have talked many times about my Tektronix 2246 oscilloscope in the past as it is by far my favorite analog scope. Simple, reliable, and inexpensive and was the first 'real' scope I had purchased used about 10 years ago. So to destroy it, all I had to do was take the enclosure off.

All Tektronix scopes of this era usually have handles attached to them for portability which is a nice feature. My problem was that I never take it anywhere, it stays firmly situated in the center on my bench as it is my go-to scope for most basic troubleshooting. Having the handle attached resulted in one problem, it prevents you from easily stacking anything else on top of it. With an ever growing bench of test equipment I really needed the real estate on top of it, so the handle had to go.

Removing the handle requires unfortunately more work than necessary. There is no external bolts to remove to take it off, instead the bolts attaching it are on the inside requiring the entire enclosure to be removed. While somewhat annoying, the handle has a well designed strong attachment to the scope. If I were to transport my scope around I would have no concerns of the handles integrity.

Tektronix 2246 Handle Mount Inside the Enclosure


Normally the covers of all scopes in this era come off easily, typically there are 4 screws on the back of the scope and maybe one or two on the sides. Once removed the back then falls off and the entire cover slides off the back. Normally I place the scope standing vertically and lift it straight up via the faceplate while the cover then remains on the bench. My Tektronix 2246, 2445B, and TDS-420 all have this very similar design (and have removed the later two without consequence).

So what went wrong? There was unfortunately a few dents on the bottom of the units case that I did not consider to be an issue. When I began sliding the cover off, it slid about 6" or so and had some resistance. Not seeing anything to be a problem I pulled a little harder (not excessively) and the cover did continue to come off as normal. Once removed I saw a small round heatsink laying on the bench. That's odd I thought, as I don't recall hearing anything rattling around inside previously. Once I looked to see where it came from I realized what had happened.



The dents on the cover that were pushed in had snagged a transistors heatsink on the bottom pcb. This had then put force on a TO-39 transistor ripping one of the leads off of it.



The transistor itself was not salvageable as the missing lead had been physically torn out of the can. Looking into the part itself it looks to not be an easy replacement. The markings on it reference it to a custom Motorola / Tektronix part number of 151-0846-00.


Searching for this part I discovered two things. 1. I'm not the first person who this has happened to. 2. There are no easy to find replacements for this part. The part is critical to the scopes operation as it will not power up without it in place.

The part cross references to a SRF5286 or 2N3866A. The 2N3866A is possible to find and purchase inexpensively, but reports from others say that since it is not an exact replacement for the original Motorola part, it will not work. I'll probably give it a try anyway and also be looking for a 2246 parts unit in the meantime. 






Friday, September 17, 2010

My Electronics Bench and Test Equipment

I have been into the electronics field since I was about 11 years old. I reached that phase of my life where I began taking everything apart and wondering what all this 'stuff' inside these electronic devices was. It wasn't too long until I began understanding and learning while making my own analog and digital designs come to life. Eventually I reached a point where my current tools were just not allowing me to really debug and see what was going on inside the circuit I was designing. This is where I realized I needed better equipment than what I had.

Throughout this post I am going to talk about the equipment I own and what you should look for if just stating out in electronics. With all of the equipment available on the used market, anyone beginning in electronics that is taking it seriously should have the basics: A good multimeter, a soldering station, and a current limiting adjustable power supply. Without these three items frustration will only ensue.

We all start somewhere and my start was with a $9 RadioShack soldering iron and a couple dollars more analog multimeter. While the meter suited me fine for a very long time, the $9 fire hazard was the most frustrating piece. I remember at the time reading my Radio Electronics (later Electronics Now) magazine and looking in the back advertising sections at the nice Weller soldering stations and amazing test equipment that was being made by companies like HP and Tektronix. I had only wished that I could have even a 20Mhz oscilloscope but with my non-existing income as being in middle school allowed, I had to settle for some basic test equipment like the multimeter I had.

My break came in 7th grade when one day I happened to notice that my science teacher had an oscilloscope in the labs storage closet. I questioned my teacher about it only to learn that it didn't work and had been there a very long time. To my surprise my teacher said I could have it if I wanted it which I enthusiastically accepted. It was a very old Bell+Howell model, most likely a kit originally. It had only a couple Mhz bandwidth and upon opening it was full of tubes. The issue it had was there was no horizontal sync, only a single dot burning a mark into its crt upon power on. I immediately pulled all the tubes and went to a local tv shop which I had remembered still had an old tube tester in the back (this was like 1993, tubes were still very obsolete). I tested all of the tubes and found a few that were definitely bad and purchased replacements. Upon powering on with new tubes in place, I finally could see into the time-domain of the circuits I was building. The 555 timer oscillator circuit I could finally see the waveform being generated. From my 1Mhz crystal oscillator I could see a near perfect square wave with a 50% duty cycle. It was a very exciting time. This only fueled the fire for things to come.

I dealt with basic equipment all thorough college, but once I had a job and could finally afford good test equipment, I went at it full force. It is amazing to see how cheap test equipment has become, especially on the used market.

Here is the current test equipment that I own as this is my current bench as it exists today:


A nice big workspace is key, I personally like deep desks which allow me to place bigger items far away from me without taking up valuable local workspace. I built the bench shown above as I was not able to find any workspace that nicely fit my needs. They do exist, but can cost a considerable amount of money. I built my bench with a strong shelf to hold most of my test equipment right at eye level, it had to be considerably strong as some of the older test equipment can weigh 60 pounds or more each (HP / Agilent builds things very well ;) ). Also shown is an anti-static mat as it it important to not destroy your expensive components before you get to use them. Now to talk about the equipment itself:

Multimeter. The absolute most important piece of test equipment for anyone. In my opinion this is the first thing anyone interested in electronics needs to buy. I use Fluke multimeters as they are the best, hands-down. I have a Fluke 77 II shown here along with a Fluke 73 (not shown). Need to see exactly how much voltage that power supply is putting out? Need to see how much current this circuit is really drawing? Need to see how many ohms that resistor really is? A multimeter has the answers. A good multimeter will pay for itself the first time you don't blow up the circuit you are working on out. I also still have my original Micronta analog multimeter and use it every now and then. Analog multimeters have the benefit of being able to see slow voltage changes over time by watching the needle move. Hook one up to an 110V outlet in your home to see what I mean, it shows a slow voltage inconsistency that a digital meter cannot easily display.


Soldering Iron, a good one. This is the 2nd most important tool anyone interested in electronics needs. An adjustable temperature one is best, especially dealing with temperature sensitive smd components. You are able to turn the temp down when needed, but also have the ability to crank it up when soldering or desoldering components on huge ground planes. I like Weller, but there are many good brands out there. A digital display is nice for being able to see what the current temperature is set at. The Weller below also has an anti-static tip to make sure you don't destroy any devices from rogue static charges on the iron itself.

Oscilloscope, the standard piece of test equipment when you are serious in electronics. I have many of them. An analog scope with decent bandwidth is still an extremely important piece of test equipment as it allows you to look into the time domains of signals to see what is really going on. The Tektronix 2246 seen here is an awesome scope. This is the scope I go to most even with the several digital scopes I own. Analog scopes are simply better for viewing complex analog waveforms such as a video signal. Everyone needs at least one good analog oscilloscope. I have talked about the benefits and disadvantages of analog vs digital scopes in previous posts, but it will deserve much more discussion in it's own dedicated post. If you are looking for your first scope, go for a 40Mhz to 100Mhz analog model IMO. It will serve you well. Above the Tektronix in the pic is a Racal-Dana 1992 1.3Ghz frequency counter which I will discuss shortly.


Digital oscilloscopes are extremely awesome as well. The one shown on the bottom here is a HP 54503A digital oscilloscope. it is a 500Mhz 4-channel digitizing oscilloscope. This is the scope I go to most when dealing with high speed digital signals. The 500Mhz bandwidth allows me to see very high speed repetitive signals easily.



The scope below is one of my favorites, an HP 54112D. It is a digital scope similar to the 54503A above, but offers may comprehensive triggering options. It is often used for glitch detection, where you are looking for an anomaly in a signal. Because it has digital storage options, it is able to store any waveform once the specified trigger has been hit allowing me to see what happened. This was very useful during the design of my own custom ttl based cpu last year.

Make sure you do not skimp on the scope probes! A good set of probes can easily cost more that the scope itself when buying used. A quality passive probe from HP / Agilent or Tektronix that is matched to the scope it will be used on is a must, especially when dealing with high speed signals. Using a cheap generic probe will distort the signal being measured and not truly represent the signal you are viewing on it's display. A cheap probe can also actually inject noise into a circuit destroying the signal you are attempting to observe. Pay attention to the probe attenuation factor as well. A 10X (attenuated by ten times) probe is good for most cases, but be aware it will be difficult to look at signals under about 10 millivolts with one. Be sure to compensate any passive probe before use, otherwise your signals could appear distorted.


Power supplies. These are actually more important than a good oscilloscope for the beginner. An adjustable voltage, current limiting power supply will keep you from destroying your circuits in the event of a mistake. I have five of these and use them for everything. The ones below are all HP / Agilent models and are my favorite for the money. They are all adjustable voltage and current limiting which means you can prevent any load from drawing too much current. This is important because most power supplies can provide several if not many amps of current per given load. If you were to make a mistake in wiring your circuit and power it up with a non-current limiting power supply, you can plan to have that circuit go up in smoke. With supplies like the Agilent E3610 and E3611 shown below, you can set the current limit to N millamps / amps so that if there is a mistake it will protect your circuit from destroying itself.

I have seen some people modifying computer ATX PC power supplies for bench use and this is ultimately a horrible idea. Since they cannot current limit, using the 5V output on them could provide a huge surge current to your circuit before the power supplies protection circuit can go into effect , instantly blowing it up in your face. A current limiting supply will pay for itself the first time you make a mistake.


Logic analyzers are very important if you work with any type of digital logic. When I was designing my own CPU from scratch, this was an invaluable tool. Think of them as oscilloscopes, but differing in the fact that they can view many channels at once (think 16 to 128+ channels) and can only show states as defined per voltage thresholds for 0's and 1's over time. Basically if you need to watch many channels at once for lengths of time (a data or address bus), then to store the data... a logic analyzer is the answer. The HP 16500B shown below is my favorite with a color display and touch-screen control. It is a modular system allowing you to populate it with the boards you need. I picked mine up (I actually have three of them) from a local Dovebid auction fully populated. I had to get two of the three working, but now have a logic analyzer capable of up to 2Ghz resolution. I am only using one, keeping the others for spare parts. They are excellent tools for any digital design debugging and hardware hacking project.



PIC Programmers. PICs are my microcontroller of choice. I use Atmels and FPGAs as well, but PICs are my favorite. I use them in probably 75% of the projects I make. They are cheap, powerful, and with MPLab IDE free from Microchip along with their C compiler, I can have a working circuit in minutes. There are two programmers I use, The PicKit-2 and ICD-2. The PicKit-2 was my first programmer and still serves me well. It can program all devices with exception of PIC24, PIC32, and dsPICs. This is where the PicKit2 comes in, handling the more powerful smd PIC devices. Both have in-circuit programming capability which is nice as well. To program my microcontrollers, I have several computers at my bench. Today it is essential to have at least one for looking up component datasheets to programming your devices with your favorite IDE.

Breadboards, have had them forever and are so nice for prototyping. I use them all the time. I have many as often I have many projects going at once and don't want to scrap a circuit to start a new one. Be sure to have good wiring kits as well, nothing sucks more than not having the correct length wires to build a circuit.


Now it is time to talk RF. I love making RF filters and amplifiers and to test them you need good, stable RF generators. The two shown below combined cover all frequencies between 10Khz to 2.4Ghz. Each can be modulated with AM or FM carriers. The HP 8656B is a much newer unit with digital controls. It has option 001 (high stability timebase) which provides extremely accurate frequency generation. The model on top is an HP 8614A frequency generator which is older than I am. I picked this up on eBay for an amazing $20 and it works perfectly. It is an analog monster utilizing a klystron tube for RF generation.


A spectrum analyzer. This is the piece of test equipment I have wanted more than anything. Unlike an oscilloscope that lets you view into a signals time domain, a spectrum analyzer allows you to view a signals frequency domain. In the world of RF design, a spectrum analyzer shows you everything you want to know. The HP model 8922H below is actually a GSM / PCS cellular test set, but has option 006 which is a 10Mhz to 1Ghz spectrum analyzer.


Frequency counters are extremely useful for measuring frequencies in oscillators or any clock / RF source. The one shown below by Startek is a handheld model designed for sniffing out transmitters and other RF sources. It can also be used with a good probe to measure frequencies of any clock or RF source up to 2.4Ghz. Earlier above I showed my Racal-Dana bench top frequency counter which has a higher resolution then the Startek. I use both to measure RF frequencies in clock sources, RF sources, and to make sure any frequency is what it is supposed to be. You can use an oscilloscope (provided it's bandwidth is high enough) to measure frequency too, but frequency counters usually have much higher resolution.


Second bench, this bench is just spare space with a Tektronix TDS-420 digital oscilloscope and analog current limiting power supply. I use it for quick testing of devices when my main bench is full of clutter. Also seen is a small parts cabinet, and plenty of spools of chemicals, solder wick, and solder (use ROHS solder!, lead is not good. Yes, solder with lead does flow better but you will get used to the non-lead stuff).


More work space, of course completely cluttered, but more space is always needed. The dry erase board in background is always fun for drawing up new ideas.


This bench is where I work on enclosures and any type of metal or plastic work needed for a project. By far a drill press is the most used tool I own. The band saw and newly added milling machine help considerably when working with aluminum and plastic parts for enclosure panels.



The parts rack is the goto place for components. Keep everything you have organized so you spend less time looking for components and more time actually working on designing and assembling!




Sunday, October 12, 2008

Tektronix TDS-420 oscilloscope external video display

A nice feature of the Tektronix TDS series of digital storage oscilloscopes is their external video display capability. Most (if not all) Tektronix scopes in the TDS series have an external video output (including my TDS-420) for hooking up an external display.

The internal display is very nice:


Sometimes it would be nice to have a larger display at my bench level while working...

Unfortunately this external video output is in a 9-pin form, unlike the standard DB15-pin connector we are familiar with on our VGA monitors. Because Tektronix labeled the connector as 'VGA compatible', I assumed it held to the VGA standard, and would be compatible with most modern multisync monitors.


To hook up an external display to your TDS series oscilloscope, you must perform the following. Obtain a standard 15-pin VGA connector cable and remove one end, replacing it with a standard 9-pin connector (preferably a metal connector to help with shielding). Wire the new 9-pin connector to the VGA cable as listed here. The 15-pin connector is on the left with pin assignment to the 9 pin on the right:

VGA DB15-S Female DB9 Female
15-pin, 9-pin
1, 1 Red
2, 2 Green
3, 3 Blue
4, - Monitor ID bit 2
5, - N/C
6, 6 GND
7, 7 GND
8, 8 GND
9, - N/C
10, - GND
11, - Monitor ID bit 0
12, - Minitor ID bit 1
13, 4 Horizontal Sync
14, 5 Vertical Sync
15, - N/C

I tied pin 6 on my 15 pin connector to all three grounds (6,7,8) on the 9 pin connector. After assembly of the connector, I gave it a try with success!



One of my Samsung Syncmaster 151v lcds on my bench sync'd up perfectly along with several other lcd monitors I have around. With the output being 640x480 there is plenty of resolution on the display giving the external monitor a very nice picture.