I wanted the design to be flexible, that is with a single board I could populate it with a variety of VCOs only having to update the ADF4107 register configuration and the loop filter component values to produce a fixed or tunable frequency. My final design achieved this goal.
ADF4107 based frequency synthesizer |
The ADF4107 can utilize a variety of VCOs, I chose to go with a Z-Comm device which I have used in many previous designs. The specific VCO used in this version is a V940ME02. It has an adjustable output frequency range of 5220 to 5420Mhz which fit well into the 5.40Ghz LO needed for my downconverter. The reference input to the PLL is provided by a 32Mhz TCXO crystal, which was a last minute change as I ordered the wrong package type for the original 20Mhz TCXO I had specified for the design. Only some reference counter changes were needed to use the alternate crystal that I had in my parts bin.
The ADF4107 itself is a very complex device looking at both its usage and programming. To help integrate this family into your design, Analog Devices has a great tool called ADIsimPLL to assist with the initial design regarding calculations of output frequency range based on the reference frequency input. It will also assist with selecting the loop filter component values based on a given design among many other useful things.
ADIsimPLL screenshot |
The design itself follows good mixed-signal design practices. The board is a four-layer design that I had received from my favorite fab house, OSH Park. Upon receiving, I populated by first board by hand and had a working board on power up. ADF4107 register programming took a bit as the specific loading order of the registers was tricky, but once mastered, the PLL immediately locked onto 5.40Ghz according to my frequency counter. I couldn't view it directly on my spectrum analyzer as it only goes to 3Ghz, but the frequency counter was nicely stable at 5.4 Ghz plus or minus a few hundred hz. Each subsequent PLL lock is almost instantaneous. I added two LEDs to some spare PIC outputs, one of them is used to indicate when there is PLL lock and a spare that can be used for any additional status I wish to see.
An output filter is included in the design, in this case it has a center frequency of 5.4Ghz. Filters of this frequency are easy to find as they are used a lot in 802.11a WLAN hardware. I did not include an output amplifier on this board as I had planned to keep the design as simple as possible, instead I would be using an external amplifier. This will need to be the case as the output of this VCO at 5.4Ghz is -15dBm, which is not high enough to provide a LO for most mixers. So on any future redesigns, I may add an amplifier back in.
by your show and tell, i found a few surplus boards in San Jose California, i found a few premium double balanced mixers, and the part you are illustrating, , i have a love for rf, like yourself, and am a small project builder, i am working on a full duplex transceiver, for video transmission of HD 60p, nice to see your work, Cheers from Thomas in Vancouver Canada.
ReplyDelete